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Abstract. We discuss the components and main requirements of the interactive visualization and 
simulation system intended for better understanding the dynamics of solid tumor proliferation. 
The heterogeneous Complex Automata, discrete-continuum model is used as the simulation 
engine. It combines Cellular Automata paradigm, particle dynamics and continuum approaches to 
model mechanical interactions of tumor with the rest of tissue. We show that to provide 
interactivity, the system has to be efficiently implemented on workstations with multiple cores 
CPUs controlled by OpenMP interface and/or empowered by GPGPU accelerators. Currently, the 
computational power of modern CPU and GPU processors enable to simulate the tumors of a few 
millimeters in diameter in its both avascular and angiogenic phases. To validate the results of 
simulation with real tumors, we plan to integrate the tumor modeling simulator with the Graph 
Investigator tool. Then one can validate the simulation results on the base of topological 
similarity between the tumor vascular networks obtained from its direct observation and 
simulation. The interactive visualization system can have both educational and research aspects. 
It can be used as a tool for clinicians and oncologists for educational purposes and, in the nearest 
future, in medical in silico labs doing research in anticancer drug design and/or in planning cancer 
treatment. 
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1. Introduction 
 
1.1 Motivation 
 
It is widely believed that cancer is responsible for about 20% of deaths in developed countries 
[Jemal et. al., 2010]. Therefore, it is assumed to be one out of major killers in the developed 
world. Despite the enormous financial effort that has been devoted to research on cancer 
phenomenon, the most important aspects remain obscure for clinicians and experimentalists. This 
is the reason that many of the currently used therapeutic strategies become not entirely effective.   
 
A better understanding of tumor formation and its proliferation can be expected from a computer 
(i.e., quantitative) modeling. Computer models can ultimately improve the overall clinical 
outcome by predicting the results of specific types of medical treatment administered at specific 
regions of interest and time checkpoints. During the last decade a great variety of tumor models 
covering various morphological and functional aspects of tumor growth has been developed. 
These advances have been recently reviewed [Lowengrub, 2010] with a focus on the 
classification of mathematical tools and computational algorithms. 
 
As shown in [Chaplain, 2000], in silico experiments can play the role of angiogenesis 
assays. In [Stephanou et al., 2005], the Authors describe a computational tumor modeling 
framework to compare dosing schedules based on simulated therapeutic response. 
However, till now, despite the existence of scores of various computational models of cancer 
growth dynamics, a ready-to-use interactive tool for clinical application remains a dream of the 
future. This situation is unjustified knowing that both technologically and methodologically there 
is not any obstacles to create, at least, a toy interactive visualization system which might help in 
education of young oncologists and elucidate the fundamental mechanisms of cancer progression. 
The system can evolve further to a serious tools aimed to improve the therapeutic techniques 
currently used, to stimulate the development of new strategies and speed-up the anticancer drug 
design process. 
 
In this paper we discuss the main components of a novel interactive visualization tool for 
simulation of cancer growth dynamics. We present preliminary results we have obtained towards 
development of a framework of such the system. The paper is focused on the computational 
model, visualization interface and implementation issues, which are the main components of such 
the interactive visualization system.  
 
We present a framework of parallel 3-D model of tumor growth, which bases on Complex 
Automata paradigm, which combines particle dynamics with Cellular Automata and continuum 
models. To speed up calculations and to make on-line interactions possible we show the ways to 
optimize the code for multi-core CPUs and GPGPU rather than for massively parallel systems 
consisting of many heterogeneous computational nodes.  
 
1.2 Modeling domain 
 
A serious obstacle that must be overcome to simulate cancer dynamics is the intrinsic multiple 
scale nature of tumor growth. It involves processes occurring over a variety of time and length 
scales: from the tissue scale � e.g.  vascular remodeling - to intracellular processes � e.g., 
progression through the cell-cycle.  
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The structure of a solid and vascularized tumor is very dynamic and heterogeneous. Its 
development occurs in five phases: oncogenesis (carcinogenesis), avascular growth, angiogenesis, 
vascular growth and metastasis. Oncogenesis is a biological process occurring on molecular level 
and characterized by serious disruptions in DNA reparation system mainly due to numerous 
mutations. Consequently, the escape of mutated cell from apoptosis is observed. The avascular 
stage is the earliest stage the tumor develops in the absence of blood supply. The tumor grows up 
to a maximum size which is limited by the amount of diffusing nutrients and oxygen reaching the 
tumor surface. In the third stage, hypoxic cells of this avascular tumor mass produce and release 
substances called tumor angiogenic factors (TAFs). They diffuse throughout the surrounding 
tissue, and, hitting vasculature, trigger a cascade of events which eventually lead to 
vascularisation of the tumor. These phases of tumor growth are depicted in Figure 1. In vascular 
stage, tumor has access to virtually unlimited resources, so it can proliferate beyond any limits. 
Moreover, in this growth phase tumor acquires a means of transport for cells that penetrate into 
the vasculature and form metastases in any part of the host organism.  
 
The interactive system we propose comprises only two scales of tumor growth: avascular, 
angiogenesis and partly vascular phases (see Figure 1). The size of tumor simulated on-line, 
depends on the available computational power, 2-D or 3-D version of the model and its level of 
details. Approximately, taking into account the power of nowadays workstations, the maximum 
size of tumor which can be modeled using our approach does not exceed the diameter of 1 cm. 
This scale of interest is extremely important. Thus, once the tumor becomes vascularized, 
therapeutic prognoses worsen dramatically. On the other hand, in that scale, the system can be 
used in investigations of the role the various tumor angiogenic factors play and for defining the 
targets of antiangiogenic therapies.  
 

 
 

Figure 1 Angiogenic phase of tumor growth. 
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2. Computational models of solid tumor growth 
 
The computational paradigm plays a crucial role in development of in silico implementation of 
cancer model. In the length scales exceeding centimeters, continuum methods are acceptable for 
modeling tumor dynamics. Continuum model parameters can be relatively easy to obtain, analyze 
and control. They may also be accessible through laboratory experimentation. However, despite 
they can provide significant insight into the relative role that different process play in the tumor 
formation they fail completely in predicting tumor microstructure. This may be important 
deficiency when studying the effect of genetic, cellular and microenvironment characteristics on 
overall tumor behavior. Within continuum models, it is not possible to capture such the important 
events as repeated sprout branching and the overall dendritic structure of the vascular network, 
compartmentalization of the tumor tissue and remodeling processes due to mechanical 
interactions [Lowengrub et al., 2010]. 
 
Whereas continuum models describe cell populations by means of continuous fields, discrete 
models deal with the dynamics of agents. The agents usually represent individual cells which are 
tracked and updated according to a specific set of biophysical rules taken from a discrete and 
finite space of states and evolve in discrete space and time. Unlike in the continuum models, 
discrete models can follow individual cells and can reveal more details about cell dynamics and 
its interaction with the tissue. There are, for example, percolation based models [Szczerba et al., 
2008], Eden models [Alcorn et al., 2005; Lee et al., 2006], random walk and diffusion limited 
aggregation (DLA) models [Amyot et al., 2006], cell based models [Bauer et al., 2007], lattice 
gas models and cellular automata [Dormann and Deutsch, 2002; Moreira and Deutsch, 2002].  
 
Discrete approach is particularly useful for studying spatial scales of tumor dynamics below 1 cm 
such as carcinogenesis, natural selection, genetic instability, interactions of individual cells with 
each other and the microenvironment.  Analyses of cell population dynamics have also been 
employed in order to study biological characteristics applying to all cells in a particular 
population, such as response to therapy and in studies of immunology.  
 
According to [Lowengrub et al., 2010], there are two main types of discrete models, i.e., lattice 
based and lattice-free. The former describes the dynamics of discrete tumor cells as automata on a 
grid whose states are governed by a set of deterministic or probabilistic rules. One of the most 
popular lattice based paradigm used for modeling tumor growth are cellular automata (CA) (see 
the critical overview [Dormann and Deutsch, 2002]). Cellular automata deal with the dynamics of 
discrete elements populating the nodes of structural grid. The elements take their state from a 
discrete - finite or infinite - space of states and evolve in discrete space and time. The dynamics 
of the elements is defined in terms of local, either deterministic or probabilistic, rules. To describe 
four aspects of tumor growth, namely, avascular growth, vascular growth, invasion, and 
angiogenesis, the classical CA models should be supplied with additional graph structures defined 
on the top of a regular grid [Topa, 2008]. The mechanical interactions between the tumor and 
healthy tissue are only partly addressed in [Mansury et al., 2002]. 
 
The lattice-free approaches describe the motion of discrete cells in arbitrary locations and their 
interactions. It is possible to translate detailed biological processes (e.g. cell life-cycle) into rules 
influencing both the cell motion and their mutual interactions. However, the computational cost 
increases faster than linearly with the number of modeled cells, limiting these methods to the 
spatial and temporal scales defined by the achievable computational power. Moreover, while 
these models are capable of describing biophysical processes in significant detail, it may be 
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nontrivial to obtain reliable measurements of model parameters through experiments e.g., 
parameters of cell interaction rules. 
 
An important research domain involves the development of hybrid continuum�discrete models 
for tumor growth. These models have the potential to combine the best properties of both 
continuum and discrete approaches. They may provide more realistic coupling of biophysical 
processes across a wide range of length and time scales. Discrete models are usually hybridized 
with continuum approaches in the sense that both substrate concentrations and blood flow are 
computed using continuum approaches (i.e. oxygen, glucose, matrix-degrading enzymes 
concentration by solving reaction-diffusion equation and blood flow by integrating hydrodynamic 
equations) while the cell-based components such as migrating EC tip cells are discrete.  
 
The oldest hybrid model, simulating two-dimensional spatial distribution of sprouts, was 
presented by Stokes and Lauffenburger [1991]. It uses a classic Folkman formulation [Folkman 
1971; Folkman and Hochberg, 1973]. The tumor is located at the top center of a box of finite 
volume and the capillary at the bottom. The evolution of molecular species is governed by 
discretized reaction-diffusion equations. A stochastic differential equation simulates the migration 
of endothelial tip cells employing a particle dynamics in TAF concentration field. This approach 
is the basis of many other hybrid models (e.g., [Chaplain, 2000;  Godde and Kurz, 2001; Preziozi, 
2003; Alacorn et al., 2005; Amyot et al., 2006;  Milde et al., 2008; Dormann and Deutsch, 2002; 
Moreira and Deutsch, 2002; Topa 2008]) which differ in: 
 
• geometrical properties of the simulation such as: dimensionality (2-D, 3-D), type of 

discretization of space and time (on-grid, gridless), structure of vascular network (rigid, 
structured, unstructured) etc. 

• modeling accuracy � defined e.g. by the number of angiogenic factors and other subprocesses 
included in the model, 

• methodology of simulation of the process of vascularization and tumor growth (stochastic, 
deterministic, cellular automata, lattice-gas, DLA etc.), 

 
The accuracy of the computational model depends on the proper choice of processes and multiple 
scales crucial for tumor growth. Because of the complexity of cancer evolution, many models to 
date focus on single key sub-processes, disregarding their interactions with others. Many attempts 
assume either a static tumor and concentrate on dynamic vascularization in the absence of tumor 
growth or a static network topology. Some of them use dynamic network describing 
hydrodynamics of blood flow while neglecting its interaction with concentration fields and tissue 
components [Godde and Kurz, 2001]. There are also many models which describe only avascular 
phase of tumor dynamics [Dormann and Deutsch, 2002].  The usefulness of these models is 
strongly constrained. Truly important are the models, which track coupled tumor growth and 
tumor-induced neovascularization using a discrete approach for both. 
 
These hybridized models are the basis for the development of the multiple-scale approaches 
which - apart from the tissue scale evolution - include processes from cellular and molecular 
scales. They represent the most advanced simulation methodologies. Multiple scale models 
incorporate e.g. cellular heterogeneity, intercellular phenomena, more complex mechanical laws 
to describe the response of the tissue to external forces, blood hydrodynamics and vessel 
remodeling. Advanced multi-scale models of tumor progression are presented, e.g., in papers by 
Bellamo et al. [2003] and by Alacorn et al. [2005]. Rigid geometric constrains which disable 
realistic visualization and are the sources of many serious artifacts belongs to the principal 
weaknesses of these models [Wcislo et al., 2009].  
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For challenging high computational demand of discrete approaches in modeling spatial scales 
exceeding 1 cm, coupled continuum�discrete descriptions of tumor cells are realized. It is the 
second type of hybridized models in which the tumor itself is described using both continuum and 
discrete components to reduce computational complexity of discrete approach. This hybrid 
modeling is very important as it affords the possibility of seamlessly up-scaling from the cell-
scale to the tumor and tissue scales. For example, a greater part of the system can be simulated 
using continuum approach while some critical regions can be modeled using discrete approach, as 
in [Kim et al., 2007; Stolarska et al., 2009]. They simulate the motion of separate (discrete) cells 
in the outer proliferating rim of an avascular tumor while they use continuum description of cell 
dynamics (i.e., density of cells in various states) in the inner quiescent and necrotic regions of the 
tumor. On the other hand, both the continuum and discrete representations of tumor cells can be 
employed simultaneously throughout space, subject to mass and momentum conservation laws 
which incorporate interactions among the discrete and continuous fields [Bearer et al., 2009]. 
Very detailed overview of the recent continuum, discrete, hybrid and multi-scale models of tumor 
proliferation, containing almost 600 references, are presented in Lowengrub et al. [2010]. 
 

 
 
Figure 2 Main processes from various spatio-temporal scales involved in tumor proliferation 
(from [Wcislo et al. 2009]). 
 
In macroscopic (> 1 cm) and mesoscopic (> 1 mm)  scales tumor growth is a purely mechanical 
phenomenon. Just mechanical interactions influences the most the structure of vasculature, blood 
flow, tumor shape and decides about its directional progression. Due to the lack of computational 
framework, existing computational paradigms are not able to reproduce adequately this basic 
process. This is a serious obstacle in creation of a truly multi-scale model of tumor dynamics, 
which enables not only addition of novel components representing the chemical and biochemical 
inter and intracellular processes but allows for realistic tumor visualization in macroscopic scale 
as well. Moreover, the lack of computational metaphor which enables realistic visualization of 
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tumor dynamics disables the possibility of creation interactive tumor growth simulator which 
allows for its dynamics be observed and modified directly by oncologist. We propose here the 
complex automata paradigm (CxA) based on particle dynamics as a computational framework of 
the mechanistic tumor model. 
 
In Figure 2 we present the main processes from various spatio-temporal scales involved in tumor 
growth. The microscopic processes such as cell motility and cell cycle are discrete. The 
macroscopic scale refers to phenomena which are typical for continuum systems such as diffusion 
(of oxygen and TAF), overall tumor condensation and blood flow. In macroscopic models, 
microscopic phases can be approximated by coarse grained models as long as the methodology of 
multi-scale simulation and adequate computational resources are lacking. The arrows in Figure 2 
show the relationships between these processes. The particle model presented in the following 
sections refers only to the processes shaded in blue.  
 
Complex automata (CxA) are a generalization of cellular automata paradigm. They represent a 
scalable hierarchical aggregation of CA and agent-based models [Hoextra et al. 2007]. Globally, 
CxA can behave either as the classical CA nodes on a structural lattice or as interacting particles 
whose dynamics is described, e.g., by the Newtonian laws of motion or other stochastic laws.  
 
In [Wcislo et al., 2008, 2009, 2010a,b] it was shown that the complex automata paradigm 
employing both particle dynamics and cellular automata rules can be used as a robust modeling 
framework, e.g., for developing realistic models of tumor growth as a result of emergent behavior 
of many interacting cells. This framework represents the spatio-temporal scales involving 
mechanical interactions between growing tumor, normal tissue and expanding vascular network. 
This framework can be easily extended by including both fine grained processes responsible for 
tumor creation/proliferation and be coupled with tissue scale processes modeled by continuum 
reaction-diffusion and blood hydrodynamics equations. In the following paragraph we present 
briefly the assumptions of our CxA particle model. 
 
3. Particle model as a framework of the interactive visualization system 
 
3.1 Model description 
 
As shown in Figure 3, in our Complex Automata model a fragment of tissue and vasculature is 
made of particles. The particle is defined as ΛN={Oi: O(ri,vi,ai), i=1,�,N} where: i is the particle 
index; N - the number of particles, ri,vi,ai - particle position, velocity and attributes, respectively. 
We assume additionally that: 
 
• Each particle represents a single cell with a fragment of ECM (extracellular matrix).  
• The vector of attributes ai is defined by: 

o the particle type {tumor cell (TC), normal cell (NC), endothelial cell (EC)},  
o cell life-cycle phase shown in Figure 4 {newly formed, mature, in hypoxia, after hypoxia, 

apoptosis, necrosis},  
o oter parameters such as: cell size, cell age, hypoxia time, concentrations of k=TAF 

(tumor angiogenic factor), or O2 (and other diffusive substances) and total pressure 
exerted on particle i from the rest of tumor body and tissue mass. 

• The particle system is closed in 3-D computational box under a constant external pressure.  
• The vessel is constructed of tube-like �particles� (called EC-tubes) made of two particles 

connected by a spring (see Figure 4).  
• We define three types of interactions: particle-particle, particle-tube, and tube-tube.  
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• The forces between particles mimic both mechanical repulsion and attraction due to cell 
adhesiveness and depletion interactions cause by both ECM matrix and the cell itself.  

• We postulate the particle-particle conservative interaction potential Ω(dij) defined as follows: 
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Figure 3 Tissue particles and tube-like EC-tube particles made of two spherical �vessel 
particles�. 

 

 
Figure 4 Cell life cycle and various cell stages.

 
 
 
where |rij| is the distance between particles while ri and rj are their radiuses. Additional viscosity 
force, proportional to the particle velocity, simulates dissipative character of interactions. The 
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cells of all kinds (tumor, normal and EC-tubes) evolve in discrete time according to Newtonian 
dynamics in the continuum diffusion fields of TAF and nutrients. The concentration fields are 
updated every time-step. We assume that both the concentrations and hydrodynamic quantities 
are in steady state in the time-scale defined by the time-step of numerical integration of 
equations of motion. This assumption is justified because diffusion of oxygen and TAFs through 
the tissue is many orders of magnitude faster than the process of tumor growth. On the other 
hand, the blood circulation is slower than diffusion but still faster than cell-life cycle. Therefore 
we used fast approximation procedures for both calculation of blood flow rates in capillaries and 
solving reaction-diffusion equation.  
 

  
 

  

a 

b 

 
 
Figure 5 Snapshots from particle based simulations of dynamics of a) avascular tumor (necrotic 
center is displayed) b) vascularization of tumor influenced by pericyties (functional vessels are 
in green, the red ones are capillaries under regression) 
 
As shown in Figure 5 (see http://www.icsr.agh.edu.pl/~wcislo/Angiogeneza/index.html) we can 
observe and control both the phase of avascular tumor dynamics and its proliferation after 
angiogenic switch.  
 
For example, the section of the tumor spheroid, shown in Figure 5a, displays a layered structure. 
We can observe formation of a core zone composed mainly of necrotic material surrounded by a 
layer of quiescent tumor cells and an outer ring of proliferating tumor cells. It is crucial to 
understand the processes, which are responsible for the growth of a layered and saturating tumor. 
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Expanding tumor involves even more factors such as blood dynamics in newly formed vessels 
their regression/maturation and remodeling due to complex mutual interactions of 
TAF/nutrients/perycites and growing tissue/tumor pressure. Particle model allows for attacking 
many important problems influencing angiogenic switch e.g., if intravenous infusion of 
pericytes grown ex vivo will stabilize angiogenesis and slow down tumor growth (e.g., [Darland 
et al, 2003]). The snapshots from pilot simulations using the CxA particle model are presented 
in Figure 5b.  
 
The newly formed blood vessels due to the process of angiogenesis become functional when 
they form anastomoses. It allows for blood flow due to pressure gradient on its ends. Otherwise, 
we assume that the functional capillaries but without pericyte support dissolve. Moreover, 
nonfunctional and immature vessels without blood flow undergo the process of regression. The 
vessel maturation is controlled by the density of pericytes. The varying degrees of pericyte 
recruitment indicate differences in the functional status of the tumor vasculature. In simulation 
presented in Figure 5b we assume very simplistic model of vessel maturation. The regression 
time depends on the local density of EC tubes assuming constant concentration of pericytes. If 
the density is too high regression time is shorter. This model should be corrected calculating 
pericyte concentration using the continuum models mentioned earlier.  
 
 
3.2 Directions of the model development 
 
For characterization of e.g. melanoma cell lines, the model should simulate the migration of 
cancer cells in normoxic and hypoxic conditions. We show in [Wcislo et al. 2009] that the 
inward motion of cells from the rim of 3-D tumor globule to the necrotic center is a purely 
mechanical effect caused by pressure drop from the surface towards this center. However, the 
mechanical effects allowing for cancer cell motility outward the tumor is more sophisticated 
phenomena (e.g. [Motsumoto et. al., 2008]).  
  
To find the mechanical and biological factors enabling tumor cell motility, the tumor mass 
dynamics should be modeled in a greater precision than it was done in [Wcislo et al., 2009]. In 
this model we simulate the tumor as a collection of soft spheres. However, for many types of 
tumor, the mass can be treated rather as a physical system with properties on the border between 
the solid and the liquid. Therefore, to simulate better the influence of adhesiveness of cells and 
viscosity for tumor fingering and compartmentalization we plan to use different model of cell 
interactions, similar to that in dissipative particle dynamics and fluid particle dynamics methods 
[Espanol, 1998; Dzwinel et al., 2002] 
 
The tumor, normal tissue cells and EC-tubes will be defined by its mass, moment of inertia, 
translational and angular momenta. Two particles i and j interact with one another by a collision 
operator Fij defined as a sum of constituent forces, whose parameters are dependent on the type of 
interacting particles. The forces are central and non-central and consist of conservative FC (see 
Eq. (2)), dissipative FD and Brownian FB components and:  
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where: F(rij) � is a central conservative force, whose formula depends on the types of interacting 
particles, γ - is a scaling factor of dissipative forces corresponding to viscosity, A(rij) and B(rij) are 
the weighting functions, FB is a random component representing cell random motion. In original 
fluid particle method this factor is scaled by the temperature of the system and expressed in terms 
of the weighted Wiener increments. In our model it will define the dissipative properties of the 
tissue, i.e., its softness.  
 
The value of Fij, is equal to 0 if the separation distance between two particles i and j, rij, exceeds a 
cut-off radius Rcut. The total force per each particle i is computed as a sum of forces interacting 
with particle i within the sphere of the radius equal to Rcut. The temporal evolution of the particle 
ensemble obeys the Newtonian equations of motion with rotation of the particles included, 
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where ri is the position of particle i, Pi is its momentum and ωi angular velocity. We assume that 
the interactions between spherical particles and EC-tube particles have a similar character.  

 
To enable the simulations of tumor sizes above one centimeter the hybridization of two models � 
continuum approach and the CxA based framework - is the principal methodological goal for the 
future. It will consist of four steps: 
 
1. Development of continuum mathematical model, which can be use for simulating tumor 

larger than 10 cm in diameter. 
2. On the base of the wavelet solver [Vasilyev, 2003] - extraction of the ROI (regions of 

interest) in which the discrete model will be used. 
3. Elaboration of bridging procedures between continuum and discrete models. 
4. Further development of the discrete particle based model towards, so called, coarse grained 

particle models where a particle does not represent a single cell but a fragment of tissue. 
 
In the rest of this paper we limit our consideration to the particle based framework presented in 
3.1. Our goal is to provide a flexible and fast simulation tool for interactive visualization which 
could be used on small but strong stand-alone workstations by clinicians for both educational 
and/or research purposes.  In the following paragraph we present the implementation issue, which 
are crucial to achieve this goal.  
 
4. Parallel implementation of particle model 
 
For modeling of tumors of realistic sizes, i.e., a few millimeters of diameter, the dynamics of 105-
107 particles - normal, cancerous and EC-tube cells - have to be simulated by exploiting the 
power of nowadays multi-core CPUs, multi-processor systems and by using optimized N-body 
parallel codes. The box of the size 3.5 mm contains about 106 cancer cells � i.e. the approximate 
number of particles that can be simulated on a strong laptop in a reasonable computational time. 
To simulate larger tumors, the codes should be tuned to current parallel processors.  
 
However, the CxA particle system is very different than standard particle ensembles such as in 
the short range molecular dynamics. Consequently, the process of code parallelization is more 
complicated [Wcislo et al., 2010a,b]. The cells can proliferate, change their size or annihilate. 
Moreover, they have additional attributes, which evolve according to the rules of CA and 
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influence the cells� dynamics. The attributes, in turn, depend on concentration fields of O2, TAF 
and other substances. This requires solving reaction-diffusion equations and calculating the 
intensity of blood flow in capillary vessels every time step. 
 
4.1 Algorithms and data structures 
 
Classical N-body codes, such as molecular dynamics (MD), simulate spatio-temporal evolution of 
a particle ensemble confined in a periodic cube by integrating numerically Newtonian equations 
of motion [Haile, 1992]. Single time-step consists of two consecutive procedures: computation of 
forces acting on each particle and moving them according to the total momentum calculated.  
 
For short-range interactions, the forces can be computed using fast O(N) method exploiting 
alternately Hockney or Verlet algorithms [16]. However, both the calculation of forces and 
approximate procedure used for solving diffusion equation, require finding all the pairs of 
particles in the nearest neighborhood. As shown in Figure 6a, the computational box is divided 
onto cubic sub-boxes with edges equal to the interaction range. The particle located in a given 
sub-box interacts with other particles located in this sub-box and in adjacent sub-boxes.  
 

 
 
Figure 6 a) Domain decomposition used for forces calculation. b) Data structures storing 
spherical and vessel particles [Wcislo et al., 2010]. 
 
As shown in Figure 7, the computation of EC-tube particles interactions is the most critical 
component influencing computational efficiency. The length of EC-tube is considerably greater 
than its width. It involves considerably larger sizes of sub-boxes (Figure 6) than those used for 
spherical particles. Moreover, the tubes can grow exceeding the size of 5 sub-boxes used for 
forces calculation between spherical cells.  
 
To solve this problem we propose using instead of one array of particle positions, two separate 
data structures P and V: P for storing spherical particles and V for EC-tubes, respectively (see 
Figure 6b). The P data structure is represented by 3-D array of Hockney sub-boxes (Hockney 
cells) with tumor and normal particles. The V is a data structure consisting of the array of pointers 
to records representing EC-tubes and the additional 3-D array of sub-boxs used to compute 
particle-tube and tube-tube interactions. The sub-boxs in this array correspond to respective sub-
boxs in P. Because vessel particle is long enough to cross several sub-boxes, it cannot be assigned 
to a single sub-box, as it is in Hockney algorithm. Instead, EC-tube is placed in a minimal cuboid 
composed of all the sub-boxs it crosses. This cuboid is enlarged then by one sub-box margin in 
each direction, covering the vessel particle together with its cut-off radius. We assume that the 
vessel particle belongs to all the sub-boxs forming this final cuboid. 
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Figure 7 The main procedures invoked in a single time-step and diagram showing the shares of 
computational time used by various procedures of the model (the evolution of 106 particles was 
simulated). 

 
Figure 8 Vessel-vessel interactions and vessel growth rule. 

 
Calculation of forces between particles is realized by three separate algorithms: particle-particle, 
particle-vessel and vessel-vessel interactions calculation. Particle-particle forces are calculated 
using standard Hockney algorithm [Hockney and Eastwood, 1981]. In case of particle-vessel 
computation, for each corresponding pair of sub-boxs cp, cv from P and V, respectively, particles 
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from cp are tested against vessel particles from cv. If the distance between the pair of particles is 
shorter then the cut-off radius, their mutual interaction is calculated. 
 
The algorithm for vessel-vessel computations is constructed knowing that if two EC-tubes lie in a 
distance shorter than cut-off radius, there exists at least one sub-box in V containing both 
particles. Therefore, all interacting pairs can be found by iterating throughout all sub-boxes and 
testing all-to-all distances. The problem is that a pair of particles representing two interacting EC-
tubes can be found in many sub-boxs while it should be taken only once. To solve it, we 
introduce ternary relation R (see Figure 9), which eliminates redundant interactions: 

 





















=
=
=
∈∈

=⊇××

zcmzemze
ycmyemye
xcmxemxe

CcEceecee

RCEcEc

.).,.max(
,.).,.max(
,.).,.max(
;;,:),,(

21

21

21

2121

                                                   

(4) 

where: Ec is the set of EC-tubes, C is the set of sub-boxs in mesh, c.x, c.y, c.z are coordinates of 
sub-box c in 3-D array and 

e.mx = min(sub-box(e.p1).x, sub-box(e.p2).x), 
e.my = min(sub-box(e.p1).y, sub-box(e.p2).y),                                 (5) 
e.mz = min(sub-box(e.p1).z, sub-box(e.p2).z), 

 
where: e.p1 and e.p2 are two ends of EC-tube e, sub-box(p) is the sub-box to which point p 
belongs to.  

 
Figure 9 Graphical interpretation of relation (4) [Wcislo et al., 2010]. 

To reduce the number of cache misses, the sub-boxes in P do not contain pointers to particle 
records but whole records instead. Each sub-box is represented then by an array of fixed number 
of objects (see Figure 6b). All the tumor and normal particles are allocated directly inside 
corresponding sub-boxes. This guarantees that particles are always properly ordered in memory 
according to their positions. However, we pay the price of greater memory consumption. This is 
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because the sub-boxes have various numbers of particles and many records are empty. As 
particles move, they change the sub-boxes they belong to. Therefore, the arrays P and V are 
updated after each time-step. In case of V, the sub-boxes are built from the beginning by using 
the array of EC-tube pointers located in V. Whereas for P, because particles are allocated inside 
the sub-boxes, changing location from one sub-box to the other means that the whole particle 
record must be moved to a different memory location. 
 
This takes longer time in comparison to pointers operation in the standard approach. However, 
because of steady nature of particles dynamics in our model, such the situation does not occur too 
often. In fact, in our simulations the process of reordering particles requires less time than 
standard linked-list procedure. The reason is, that in the former, the particles which do not change 
their sub-boxs need only �read� operation of their coordinates from the memory, while in the 
latter, for all the particles there is an additional �write� operation. 
 
During simulation, the number of spherical and EC-tube particles can both increase due to mitosis 
and decrease as the result of apoptosis and necrosis. Information of newly formed and dead 
particles must be added and removed from the data structures. As doing this directly could cause 
problems with synchronization, three intermediate data structures are employed: for newborn 
particles in P, for new vessel particles in V and for indexes of dying vessel particles in V. 
Removing objects from P is done directly as it is sub-box-local operation, which does not impair 
other threads operation and never cause data structures to be rebuilt. Moving object from 
intermediate structures to P and V and removing object from V is done sequentially between 
separate time-steps. 
 
4.2 Speedups and exemplary results  
 
Our parallel algorithm is constructed for a single shared memory node and is implemented in C++ 
with OpenMP interface. The timings were obtained for SGI Altix XE 1300 cluster consisting of 
256 SGI Altix XE 300 nodes and SPARC Enterprise T5120. The single Altix node consists of 
two four-core processors Intel Xeon 2.66 with 16 GB of RAM allowing for maximum 8 threads 
executed in parallel. The SPARC computer consists of eight-core 1.2 GHz UltraSPARC T2 CPU 
capable of running in parallel eight threads per single core. It gives in total 64 threads per node 
executed concurrently on 32 GB of RAM.  
 
We have employed domain decomposition both along one side of the computational box (each 
box slice was handled by one thread) and dividing the box onto sub-boxes of equal sizes (for 8 
threads we have 2x2x2 grid of sub-boxes, while for 64, 4x4x4 grid of sub-boxes). 
 
As shown in Figure 10, the preliminary timings obtained for our parallel code are very 
encouraging. We got speed-up of about 7 on 8 threads CPU and about 30 on 64 threads CPU 
simulating 106 particles. The timings could be better for more realistic vessel densities much 
lower than those considered in the test runs. 
 
The snapshots from simulations of tumor vasculature progression obtained for timing tests are 
shown in Figure 11. The tests were performed for particle ensembles of various sizes. The initial 
scene consists of two straight parallel vessels, the cells representing normal tissue and a few 
cancerous cells located between the vessels.  
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Figure 10 The speed-ups obtained for the main procedures of the tumor model during simulation 
of 106 particle ensembles on two test machines [Wcislo et al. 2010]. 

T=20000∆∆∆∆t T=0 T=5000∆∆∆∆t T=10000∆∆∆∆t 
 

Figure 11 The snapshots showing the time evolution of tumor vasculature. The tissue particles 
are invisible. 

Because of increasing TAFs concentration, secreted by the tumor cells in hypoxia, we can 
observe newborn capillaries sprouting out from the source vessels. The vasculature expands and 
is continually remodeled due to tumor growth dynamics. The sprouts can bifurcate and merge 
creating anastomoses. The blood flow is stimulated by pressure difference in anastomosing 
vessels. Only productive vessels have a chance to survive if the TAFs concentration is 
sufficiently high. Unproductive vessels disappear after some time. Well oxygenated cells are 
colored blue (dark gray) while the cells in hypoxia are marked by shades of green (light gray). 
Necrotic cells are black.  
 
4.3 Possible improvements 
 
To exploit the full power of multiprocessor system, the second level parallelism could be 
introduced based on massage-passing MPI interface. However, it would make the code extremely 
complicated and rigid for improvements. This could also extend the time for implementation and 
tests. Moreover, running the code on the large number of CPUs is usually restricted by system 
administrators and consumes much time and money. So, having in mind the shift in modern chip 
technology towards production of multiple-core CPUs (empowered by GPU) we decided to meet 
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this trend implementing the code open for both future improvements in the model and 
technological progress.  
 
Tuning the code for GPU architecture seems to be much better idea. We can expect that the 
computations can be considerably accelerated. We have implemented on Nvidia GPUs in CUDA 
environment the procedure of calculation of particle-particle interactions, which exploits brute 
force algorithm combined with Hockney�s one. Proposed algorithm was tested on two CUDA-
enabled devices: GeForce GT 330M and Tesla C1060. Their technical parameters are 
summarized in Table1. 

 
Table 1: The parameters of GPU devices  

 
Device GeForce GT 330M Tesla C1060  
Compute capability 1.2  1.3  
Number of multiprocessors (MP) 6  30 

Number of CUDA cores (8/MP) 48  240  
Global memory 1023,3 MB  4095,8 MB  
Clock frequency 1,26 GHz  1,296 GHz  

 
Table 2: Speed-up calculated against CPU algorithm employing four threads and running on Intel 

i5 M 430. 
 

Number of particles GeForce GT 330M  Tesla C1060  
128 6,42  31,37  

3072 6,12 31,77 
15360 6,04  31,21  

 
In the algorithm used for forces calculations we divide the computational box on reference boxes 
in which we calculate interparticle distance arrays using Hockney algorithm. We apply data 
structure consisting of independent vectors representing particles (storing particle position, 
velocities, forces, and attributes) which number depends on the average number of particles 
placed inside a single reference box. We increase the size of reference boxes to check the 
algorithm stability, having in mind that the computation of the vessel-vessel interactions requires 
larger Hockney sub-boxes (see Figure 9). The computational time increases with square of the 
number of vectors, however, in our model, the number of particles in reference boxes will be not 
larger than 200. 
 
As shown in Figure 12, GPU implementations of particle-particle procedure are order of 
magnitude faster than their multi-thread CPU counterparts implemented in OpenMP environment. 
In Table 2 we present the speed-ups obtained for the particle-particle procedure (in 3-D) 
implemented in CUDA implementation versus its MPI four-thread implementation on Intel i5 M 
430. We can observe that the speed-up is very stable and does not depend on the number of the 
vectors processed, i.e., no degradation of computational efficiency is observed for increasing size 
of the cut-off radius. This result is very encouraging.  
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However, the comparisons are made for the same algorithm employing in both environments. The 
confrontation with the algorithm presented in Section 4 involves tuning its GPU version to the 
requirements of the whole model and real simulation conditions. We plan to implement soon this 
algorithm in our CxA model of tumor dynamics. We expect to obtain the GPU/CPU speed-up at 
least 10 comparing to the CPU algorithm presented in section 4.1. Such decrease of 
computational time will enable to perform interactive simulations and visualizations of same 
types of tumors (e.g. melanoma) in angiogenic phase. That is, the tumors of sizes of up to 1 cm in 
diameter can be interactively visualized. 
 

 
 
Figure 12 Timings obtained for two versions of particle-particle procedure: one optimized in 
CUDA and the second in OpenMP environment. 
 
5. The system implementation 
 
In Figure 13 we present our vision of a stand-alone system for interactive visualization of tumor 
dynamics. The system consists of the parallel implementation - both on CPU and GPU - of the 
CxA based tumor model and a flexible, user-friendly, interface (see Figure 14).  

The simulation program allows several types of tissues to be simulated. Each type of 
tissue (soft tissue, bones etc.) can be described by the set of characteristic features such as 
hardness, density, average size of cells, the rate of diffusion of particular substances (oxygen, 
TAF), oxygen requirements, life span, resistance to oxygen deficiency, etc. In our system we use 
predefined sets of data for selected types of tissues, so it is not necessary to set all the parameters 
every time. These sets are prepared earlier by the specialists on the basis of biomedical data. 
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Figure 13 The concept of the interactive tool for visualization of tumor dynamics. 
 
The interface, displayed in Figures 14 and 15, enables to position the tissues as well as adjust 
their size, location and space orientation facilitating the creation of initial simulation scene. For 
example, we display in Figure 14 a typical situation when a cancerous tissue is surrounded by 
healthy cells and the two are interwoven with the network of blood vessels. Such the operations 
are mostly performed with the help of a computer mouse and a few keyboard shortcuts and 
function keys. The interface allows to the user both rendering the scene and watching the 
simulation from various angles, zoom in and zoom out, rotate etc. Moreover, it makes possible to 
observe an arbitrary intersection of the evolving tumor and surrounding tissue. This way the 
interface allows for observing tissue interior for 3-D simulations. 
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Figure 14 The screenshot of the interactive system interface. 
 

 
 

Figure 15 Different modes of system run: CPU OpenMP or GPU CUDA. 
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During both initiation stage and in the course of simulation, each model parameter can be 
modified interactively. Moreover, the simulation conditions can be changed anytime, e.g., some 
parts of tissue can be removed and/or added. This functionality is very important for examination 
the tumor dynamics after surgical intervention. The modified simulation scenario might also be 
saved as a template for the following simulations.  
 
The modeling can be carried out in two or three dimensions. However, though 3-D simulations 
are more realistic, they are more demanding computationally. It can be easily estimated that 
assuming the same number of particles, 3-D simulation will be at least three times slower than its 
2-D counterpart. As soon as the simulation scenario and initial conditions are defined, the system 
is ready to run. It might be run either on a multi-core CPU with the shared memory - then the 
simulation program uses the OpenMP libraries � and, in the nearest future, on GPU devices in 
CUDA environment. This warrants some degree of sustainability just in case when one 
technology appears to be superior over the other. As shown in Figure 15, the proper version can 
be selected at the beginning of modeling experiment.  
 
Thanks to parallel realization, the system allows for interactive, fluent visualization of tumor 
dynamics for particle ensembles consisting of hundred of thousands of particles. If the simulation 
is performed on-line (Figures 14 and 15), the program displays information about particular 
tissues (e.g. the number of cells, the number of cells in various states, pressure, O2 concentration). 
Larger models can be also simulated in batch mode, producing movies and diagrams.  
 
6. Validation tool 
 
The microvascular density (MVD) is the parameter describing structural properties of blood 
network used from years as an important descriptor in cancer therapy [Eberhard, et. al, 2000]. 
However, MVD value depends on space position, it is strongly case dependent and, moreover, it 
gives very poor knowledge about the topology of the vasculature. So, it cannot be used alone as a 
�fingerprint� describing current state of cancer dynamics. A quantitative understanding of the 
mechanism of tumor dynamics involves more sophisticated, universal, space and case invariant 
descriptors representing the most relevant topological features of tumor vasculature.    
 

 
Figure 16 The result of skeletonization of a picture displaying a blood network surrounding 
tumor mass. 
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Figure 17 The result of skeletonization of a picture displaying a vascular network in healthy 
adipose tissue [Parish, 2003]. 

 
The knowledge about topology of biological networks can play a significant role in understanding 
processes taking place in tissue and organs (see e.g. [Albert and Barabasi, 2002; Girvan and 
Newman, 2002]). As shown in [Newman, 2003], investigation of network topology using graph 
descriptors can help in understanding the behavior of the entire system but also to evaluate 
models by comparing results of in-silico experiments with in-vivo ones. The structure of a 
network encodes a number of global and local information, which can be extracted by dedicated 
measures and used in further analysis. Quantitative evaluation of such the network properties as 
connectivity, symmetry, ability to transfer signals or to form node clusters can reveal qualitative 
features of underlying complex system. In addition, local information e.g. vertex centrality or 
vertex clustering coefficient enables to find sub-networks playing the most significant role in the 
whole system and allows for grouping functionally similar nodes. The analysis of vertex or edge-
features distributions can also bring insight into system-level characteristics. Some general 
complex network descriptors are collected in Table 3.  

 
Table 3 Selected graph descriptors available in Graph Investigator application. The descriptors 

denoted by asterisk can be computed efficiently using CUDA kernels. 
Descriptor Remarks 

Randić Connectivity Index 

, where  denotes 
the degree of a vertex . 

Connectivity measure derived from chemical 
graph theory 

General Connectivity Index 

 , 
where  denotes path of length  and  all 

vertices that belong to this path 
Zagreb Index  

  
Zagreb Index  

, where  is a weight of edge 
,  for unweighted graphs   
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Modified Zagreb Index  
  

Modified Zagreb Index  
  

Total Adjacency Matrix 

  
Modified Total Adjacency Matrix 

  
B Index  

, where  is vertex distance 
for vertex  

Vertex distance Sum of distances between  and all other 
vertices from a graph . 

  
Density of edges 

 , 
where  

Information of vertex degrees 

  
Reflects connectivity and topological 

complexity in terms of number of branches, 
cycles, cliques, etc. 

Radius of graph  ,  
where  is eccentricity of vertex  

Vertex eccentricity  Maximum distance between vertex  and any 
of the remaining graph vertices 

 
Graph diameter    

Reflects density of graph connections, 
achieving its maximal value for paths and 

minimal for cliques. 
Total Walk Count Counts all paths of all lengths in the graph and 

depends on the size, cyclicity, and branching 
of the graph quantifying property called 

labyrinthicity. 
Efficiency  

  
Measures the traffic capacity of a network and 

reflects its parallel-type transfer ability. 
Heat Content, Heat Content Coefficients  Parameterized descriptors based on heat 

kernel matrix. 
Closeness  Mean distance to each other vertex 
Betweenness Measures relative importance of a vertex in 
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a shortest-path transfer through graph 
edges. 

B-Matrix descriptors  Graph B-matrix encodes information about 
distribution of -order degrees of graph 
vertices. As -order degree of a vertex  
we understand the size of the set of all 
vertices located at distance  from a vertex 

. 
 
To scrutinize if the vascular networks generated in numerical simulations are really similar to the 
realistic ones we plane to validate our model using complex network descriptors [Newman, 2003].  
This validation can be conducted on the basis of the comparison between realistic images of 
tumor vascular networks from confocal microscopy and computer experiments. As shown in 
Figures 16,17 the vasculature topology can be extracted using skeletonization filter and 
consequently transformed to a graph. Subsequently, the graph can be described by the feature 
vectors with statistical and/or algebraic descriptors of complex networks [Newman, 2003; Czech 
et al., 2011] as the feature vector components. Finally, pattern recognition and machine learning 
methods can be used for the vector classification and hypotheses formulation. This situation is 
sketched in Figure 18. 
 

 
 
Figure 18 The diagram showing the process of feature vector generation on the basis of graph 
descriptors of tissue vasculature and hypotheses generation using machine learning tools. 
 
Promising application of graph matching algorithms arises as far as inter-regional variation of 
vasculature in tumor is considered. Quantifying relations between vascular networks in different 
types of tumors can also bring valuable conclusions. For example, by comparing topologies of 
blood vessels in different metastatic tumors of the same type we might test hypothesis about their 
similarity. 
 
We have recently developed [Czech et al., 2011] Graph Investigator - a robust programming 
package - which is capable of capturing topological features of networks with the use of various 
descriptors derived from graph theory. The screen shot of the interface is shown in Figure 20. The 
set of available graph descriptors includes over eighty statistical and algebraic measures. It allows 
for performing both inter-network comparisons and to analyze global and local structural 
properties of networks on the basis of diverse criteria. Furthermore, it allows for quantifying 
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inter-graph similarity by embedding graph patterns into low-dimensional space or distance 
measurement based on feature vectors.  
 

 
 

Figure 19 The main panel of Graph Investigator. The internal windows show visualization and 
computational modules of the application. 

 
To supply the user with validation tool we plan to integrate Graph Investigator application with 
the tumor modeling simulator. The simulator is written in Java and much of descriptors are 
computed exploiting CUDA environment on GPGPU Nvidia devices. Recently, the efficient GPU 
implementations of BFS (Breadth-First Search) and all-shortest-paths algorithms were presented 
[Luo, 2010; Tran 2010]. We use CUDA implementation of BFS algorithm to obtain distance 
matrix for a graph that form the basis for computation of several graph descriptors such as 
efficiency or graph diameter. The CUDA kernels are invoked form Graph Investigator through 
Java Native Interface. The graph descriptors that can be computed with a help of GPU are 
marked in Table 3 with asterisk.  Figure 20 displays comparison of computation times of graph 
diameter for CPU and GPU implementations.  The test was performed on random Erdős-Rényi 
graphs with p=0.001 (probability of edge existence). The graph density grows with a graph size. 
The execution times presented in Figure 20 was averaged over 100 instances. For graphs of size 
1000, the GPU implementation is 8 times faster. 
 
Using both applications i.e. simulator and validation tool, it will be possible to observe, analyze 
and control on-line vasculature evolution using network descriptors. The multidimensional 
feature vector can be visualized using multidimensional scaling or principal component analysis 
tools. This way one can control qualitative changes in tumor dynamics [Topa and Dzwinel, 2009] 
and match interactively modeling parameters to experimental results.  The example of embedding  
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Figure 20 The comparison of computation times of graph diameter descriptor for Erdős-Rényi 
graphs with edge existence probability p=0.001 and sizes varying from 100 to 1000. The red line 
corresponds to CPU execution of BFS algorithm (Intel Core i7-920). The green line - CUDA 
implementation of BFS (Nvidia GTX 280). 

 
 
6. Summary and conclusions 
 
We have discussed a general vision of the system for interactive simulation and visualization of 
tumor dynamics and its ready-to-use components. It is intended as educational and research tool 
for oncologist and clinicians which could be deployed on a small but strong stand-alone 
workstations. In the future, such the tool could be used for planning cancer treatment. 
 
The system is based on the concept of Complex Automata, which combines particle method and 
Cellular Automata modeling techniques. We show that the complex automata paradigm can be 
used as a framework for developing realistic models of tumor growth as a result of emergent 
behavior of many interacting cells. Successful and realistic reconstruction of mechanical 
interactions between proliferating tumor, healthy tissue, and evolving vascular network is the 
most important advantage of the CxA framework over other modeling paradigms.  
 
The CxA model has many limitations. For example, it addresses a limited number of biological 
processes. Some of them, such the blood flow, received less attention than in other approaches. 
We did this intentionally to reduce the computational load. On the other hand, CxA model of 
tumor growth can be easily extended by implementing more precise sub-models of all the 
processes � known and unknown � responsible for tumor proliferation. However, the 
improvements by including more detailed processes and developing the particle model on its own 
(as it is proposed in section 3.2) can be undertaken provided that the efficient parallel version of 
the model will be implemented allowing for interactive visualization and simulation. We have 
demonstrated that due to parallelization of the model using OpenMP environment on modern 



GPU Solutions to Multi-scale Problems in Science and Engineering, Springer Verlag, 2011 

 27

multiplecore CPUs we can improve computational efficiency almost one order of magnitude. We 
show that similar factor is achievable using GPGPU devices. This way, relatively large tumors 
can be modeled.  
 
We expect that just technological progress simultaneously with improvements in parallel 
implementation of the model will allow for increasing of both the size of tumors simulated and 
the accuracy of the results obtained. This is the reason that the system is constantly being tuned to 
nowadays computational and visualization facilities allowing for considerable increase of 
simulation efficiency.  
 
In the paper we also describe the interface that will be employed for setting up initial conditions 
and to assure interactive visualization of tumor dynamics. Such the user-friendly interface is 
particularly important for preparing the initial simulation scenario of tumor growth, which 
requires handling with hundreds of parameters.  
 
The system will be developed in accord to both ICT technology development and the increasing 
knowledge about reasons and processes involved to cancer growth. The following versions of the 
system will be replenished, on the one hand, with more and more detailed microscopic and 
macroscopic processes and, on the other, its better numerical realization and computer 
implementation. 
 
To supply the user with validation tool, we will integrate the tumor growth simulator with Graph 
Investigator - ready-to-use data mining tool for interactive analysis of topological structure of 
tumor vasculature. Such an integrated simulation/data analysis tool would allow to do research on 
cancer development undoubtedly more effectively due to faster search of parameters domain and 
hypothesis verification. 
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